
# Is the Atom (N330) processor ready for High Energy Physics?



Gyorgy Balazs Sverre Jarp Andrzej Nowak

CERN openlab

CHEP09 - 23.3.2009



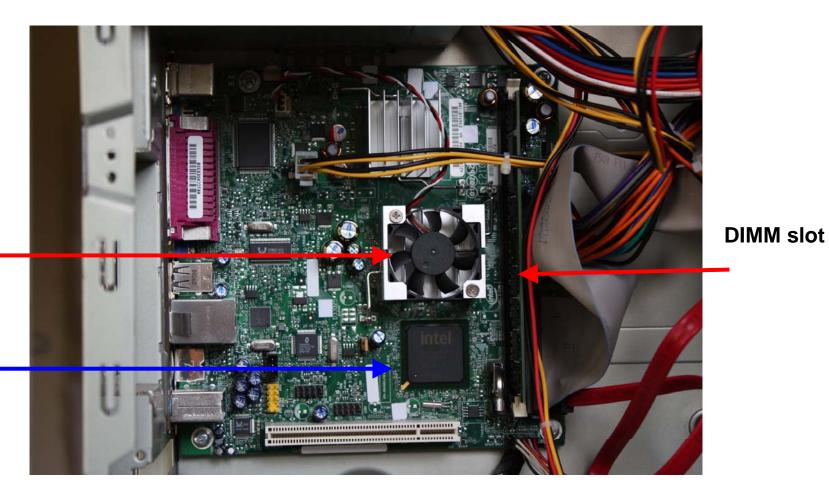
## Contents



- Hardware, software overview
- Price and power
- Benchmarking
- Future options
- Conclusions

## ATOM processor specifications




ATOM N330 is the biggest member in the current family:

| # cores                        | 2           |
|--------------------------------|-------------|
| # hardware threads /core       | 2           |
| Frequency                      | 1.6 Ghz     |
| Max (certified) memory config. | 2 GB        |
| L1 cache                       | 32KB+24KB   |
| L2 cache (per core)            | 512KB       |
| Front-side bus frequency       | 800 MHz     |
| 64-bit enabled                 | YES         |
| SIMD Extensions                | Incl. SSSE3 |
| In-order execution             | YES         |

## **ATOM** motherboard



 Note that the fan is not on the processor but on the D945GC chipset



**Chipset w/cooler** 

**Processor** 

### Power measurements



- Configuration used (Atom):
  - One 2GB DDR2 memory module (667 MHz)
  - 350W power supply (best we could find at the time)
  - Hard disk + DVD drive
  - Results:
    - Active power: 46.5 W (idle), 50.7 W (cpuburn)
    - Apparent power: 65.3 VA (idle), 70.1 VA (cpuburn)
    - Power factor: 0.71-0.72

Main consumer: Chipset ~25 W!

# Price estimates (1)



#### Taken "anonymously" from the Web (Oct. 08):

| Motherboard+CPU      | 110 CHF |
|----------------------|---------|
| 2GB DDR2 memory      | 30 CHF  |
| Power supply, drives | 110 CHF |
| Total                | 250 CHF |

**Atom** 

| 2x E5472 CPU               | 3500 CHF |
|----------------------------|----------|
| 1x4GB DDR2 memory          | 300 CHF  |
| Other (board, PSU, drives) | 1400 CHF |
| Total                      | 5200 CHF |

Harpertown

Of course, we can discuss "endlessly" whether the comparison is fair or not, so it is just meant as an indication!

# Price estimates (2)



- Memory adjustment (include 2GB/process)
  - Taken "anonymously" from the Web (Oct. 08):

| Motherboard+CPU      | 110 CHF |
|----------------------|---------|
| 2*4GB DDR2 memory    | 150 CHF |
| Power supply, drives | 110 CHF |
| Total                | 370 CHF |

**Atom** 

| 2x E5472 CPU               | 3500 CHF |
|----------------------------|----------|
| 4x4GB DDR2 memory          | 1200 CHF |
| Other (board, PSU, drives) | 1400 CHF |
| Total                      | 6100 CHF |

Harpertown

# Software configuration



#### Atom:

- Fedora Core 9 (Intel-64)
- Kernel 2.6.25
- gcc 4.3.0

#### Harpertown:

- SLC 5 (Intel-64 mode)
- Kernel 2.6.xx
- gcc 4.3.0

#### icc (Intel compiler also tested)

Ratios were similar to those with gcc

## Benchmark results



- "test40" from Geant4 (in summary):
  - Atom baseline: 1 process at 100% throughput at 47W
  - Atom peak: 4 processes at 302% throughput at 50W
  - Harpertown: 8 processes at 3891% throughput at 265W

|                               | SETUP | USER TIME           |                | ACTIVE       | ADVANTAGE |            |                     |
|-------------------------------|-------|---------------------|----------------|--------------|-----------|------------|---------------------|
|                               |       |                     |                |              |           |            |                     |
|                               |       |                     |                |              |           |            |                     |
|                               | #proc | Runtime<br>AVG (us) | % of<br>1 proc | POWER<br>(W) | Workload  | Throughput | Throughput per Watt |
| ATOM 330                      | 1     | 156                 | 100%           | 47 W         | 100%      | 100%       | 100%                |
| @ 1.6 GHz                     | 2     | 157                 | 100%           | 48 W         | 200%      | 199%       | 195%                |
| Fedora 9, GCC<br>4.3, 2GB RAM | 3     | 192                 | 123%           | 49 W         | 300%      | 244%       | 234%                |
| , 202 10                      | 4     | 207                 | 132%           | 50 W         | 400%      | 302%       | 287%                |
| Harpertown                    | 1     | 32                  | 21%            | 186 W        | 100%      | 488%       | 123%                |
| @ 3.0 GHz                     | 2     | 32                  | 21%            | 202 W        | 200%      | 973%       | 227%                |
| SLC 4.7, GCC 4.3,<br>4GB RAM  | 4     | 32                  | 21%            | 232 W        | 400%      | 1944%      | 394%                |
|                               | 8     | 32                  | 21%            | 265 W        | 800%      | 3891%      | 690%                |

## Benchmark results (cont'd)



- "test40" from Geant4 (memory adjusted):
  - Atom baseline: 1 process at 100% throughput at 53W
  - Atom peak: 4 processes at 302% throughput at 56W
  - Harpertown: 8 processes at 3891% throughput at 290W

|                                 | SETUP | USER TIME           |                | ACTIVE                 |          | ADVANTAGE  | ADVANTAGE              |  |
|---------------------------------|-------|---------------------|----------------|------------------------|----------|------------|------------------------|--|
|                                 | #proc | Runtime<br>AVG (us) | % of<br>1 proc | POWER<br>(W)           | Workload | Throughput | Throughput<br>per Watt |  |
|                                 | 1     | 156                 | 100%           | 53 W                   | 100%     | 100%       | 100%                   |  |
| Atom 330<br>@ 1.6 GHz           | 2     | 157                 | 100%           | 54 W                   | 200%     | 199%       | 196%                   |  |
| Fedora 9, GCC<br>4.3, 2x4GB RAM | 3     | 192                 | 123%           | 55 W                   | 300%     | 244%       | 235%                   |  |
| , in the second second          | 4     | 207                 | 132%           | 56 W                   | 400%     | 302%       | 286%                   |  |
|                                 | 1     | 32                  | 21%            | 210 W                  | 100%     | 488%       | 123%                   |  |
| Harpertown<br>@ 3.0 GHz         | 2     | 32                  | 21%            | 225 W                  | 200%     | 973%       | 229%                   |  |
| SLC 4.7, GCC 4.3,<br>4x4GB RAM  | 4     | 32                  | 21%            | 255 W                  | 400%     | 1944%      | 404%                   |  |
| 1                               | 8     | 32                  | 21%            | 290 W<br>e Jarp - CERN | 800%     | 3891%      | 711%                   |  |

## Benchmark results (cont'd)



- "test40" from Geant4 (in summary):
  - Atom baseline: 1 process at 100% throughput at 53W
  - Atom peak: 4 processes at 302% throughput at 56W
  - Harpertown: 8 processes at 3891% throughput at 290W
- In other words (Harpertown/Atom ratios):
  - Cost ratio was: 16.5 (with adjusted memory)
  - 12.9x throughput advantage
  - 5.2x power increase
- Atom N330 could be interesting in terms of performance/franc
  - Currently uninteresting when looking at performance/watt

## Main issues with Atom system



#### Memory:

- Need support for large memories
- Or: HEP software that needs less memory per process

#### Power consumption:

- Need a chipset with reduced consumption
- And: More efficient power supply

# Future options and suggestions



- Not just more memory, but also more efficient memory (DDR3)
- 4-core ATOM processor (?)
- Multi-threaded software process taking all CPUs
- Rack with μ-blades
- Better compiler optimization (for in-order execution)
- But, keep in mind that both Atom and Xeon families will evolve!

http://openlab-mu-internal.web.cern.ch/openlab-mu-internal/Documents/2\_Technical\_Documents/ Technical\_Reports/2008/CERN%20Atom%20330%20analysis.pdf